« Groupe de Pandas par rapport à Dataframe » Code de la réponse

Pandas Groupby
data.groupby('month', as_index=False).agg({"duration": "sum"})
Pandas Groupby
# usage example
gb = df.groupby(["col1", "col2"])
counts = gb.size().to_frame(name="counts")
count
(
    counts.join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
    .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
    .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
    .reset_index()
)

# to create dataframe
keys = np.array(
    [
        ["A", "B"],
        ["A", "B"],
        ["A", "B"],
        ["A", "B"],
        ["C", "D"],
        ["C", "D"],
        ["C", "D"],
        ["E", "F"],
        ["E", "F"],
        ["G", "H"],
    ]
)



df = pd.DataFrame(
    np.hstack([keys, np.random.randn(10, 4).round(2)]), columns=["col1", "col2", "col3", "col4", "col5", "col6"]
)
df[["col3", "col4", "col5", "col6"]] = df[["col3", "col4", "col5", "col6"]].astype(float)
Pandas Groupe par rapport à Dataframe
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]: 
      Name      City  City_Count  Name_Count
0    Alice   Seattle           1           1
1      Bob   Seattle           2           2
2  Mallory  Portland           2           2
3  Mallory   Seattle           1           1
Groupby
df['frequency'] = df['county'].map(df['county'].value_counts())

    county  frequency
1   N       5
2   N       5
3   C       1
4   N       5
5   S       1
6   N       5
7   N       5

Laisser un commentaire